Name:

Use the figure to complete the proof to establish part of this theorem: If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Part A: Given: AB = CB; D is the midpoint of \overline{AC} . Prove: $\overline{AC} \perp \overline{BD}$

Part B: Find the angle measurements of triangle ABC if angle CBD is 28 degrees.

Geometry December ECR

Score Rubric

Part A				
Score	Description			
3	The response shows complete understanding of congruent triangles and the properties needed to			
	prove that the lines are perpendicular. The proof contains logical steps and justification for each			
	step to prove the lines are perpendicular.			
	Sample student response:			
	Statement	Reason		
	AB = CB	Given		
	$\overline{AB} \cong \overline{CB}$	Definition of congruent segments		
	D is the midpoint of \overline{AC}	Given		
	\overline{BD} bisects \overline{AC}	Definition of segment bisector		
	$\overline{AD} \cong \overline{DC}$	Definition of midpoint		
	$\overline{BD} \cong \overline{BD}$	Reflexive property of segment congruence		
	$\Delta ADB \cong \Delta CDB$	SSS Congruence Postulate		
	$\angle ADB \cong \angle CDB$	Corresponding parts of congruent triangles are congruent. (CPCTC)		
	$m \angle ADB = m \angle CDB$	Definition of congruent angles		
	$m \angle ADB + m \angle CDB = 180^{\circ}$	Definition of a straight angle		
	$m \angle ADB + m \angle ADB = 180^{\circ}$	Substitution		
	$m \angle ADB = 90^{\circ}$	Division property of equality		
	∠ <i>ADB</i> is a right angle	Definition of a right angle		
	$\overline{AC} \perp \overline{BD}$	Definition of perpendicular lines		
	 Note: Credit can be earned for providing triangles congruent (ΔADB ≅ ΔCDB) with valid reasoning. Credit can be earned for proving AC ⊥ BD. with valid reasoning. The proof does not have to be a tow-column proof, but it needs to have the reasoning behind each step. 			
2	The response shows some understanding of the logical proof process and attempts to write logical			
	proof using congruent triangles and right angles but makes mistakes logic and steps in justification.			
1	The response shows minimal understanding and attempts to write a proof.			
0	The response shows minimal understanding and attempts to write a proof.			
Part B				
Score	Description			
2	Student response includes the following 2 elements.			
	* Logical reasoning for finding 3 angle measurements of triangle ABC			
	Sample of student recoonse:			
	Sample of student response: $\Delta ngal (RD = angle \Delta RD = 28 degree$			
	Angle ABC = $28 + 28 = 56$			
	Angle BAC = Angle BCA = $(180-56)/2 = 62$ degrees			
1	Student response includes 1 of 2 elements			
0	Student response is incorrect or irrelevant			

Genesis Convert Table

Task Point	Genesis Score	
0	55	
1	59	
2	69	
3	79	
4	89	
5	100	

Geometry December ECR